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Abstract

Empirical studies have revealed that regulatory DNA sequences such as enhancers or promoters often harbor multiple
binding sites for the same transcription factor. Such ‘‘homotypic site clustering’’ has been hypothesized as arising out of
functional requirements of the sequences. Here, we propose an alternative explanation of this phenomenon that multisite
enhancers are common because they are favored by evolutionary sampling of the genotype–phenotype landscape. To test
this hypothesis, we developed a new computational framework specialized for population genetic simulations of enhancer
evolution. It uses a thermodynamics-based model of enhancer function, integrating information from strong as well as
weak binding sites, to determine the strength of selection. Using this framework, we found that even when simpler
genotypes exist for a desired strength of regulation, relatively complex genotypes (enhancers with more sites) are more
readily reached by the simulated evolutionary process. We show that there are more ways to ‘‘build’’ a fit genotype with
many weak sites than with a few strong sites, and this is why evolution finds complex genotypes more often. Our claims
are consistent with an empirical analysis of binding site content in enhancers characterized in Drosophila melanogaster and
their orthologs in other Drosophila species. We also characterized a subtle but significant difference between genotypes
likely to be sampled by evolution and equally fit genotypes one would obtain by uniform sampling of the fitness landscape,
that is, an ‘‘evolutionary signature’’ in enhancer sequences. Finally, we investigated potential effects of other factors, such as
rugged fitness landscapes, short local duplications, and noise characteristics of enhancers, on the emergence of homotypic
site clustering.

Homotypic site clustering is an important contributor to the complexity and function of cis-regulatory sequences. This
work provides a simple null hypothesis for its origin, against which alternative adaptationist explanations may be
evaluated, and cautions against ‘‘evolutionary mirages’’ present in common features of genomic sequence. The quantitative
framework we develop here can be used more generally to understand how mechanisms of enhancer action influence their
composition and evolution.
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Introduction
Enhancers involved in metazoan development have been
known to harbor multiple binding sites for the same tran-
scription factor (TF), a phenomenon known as ‘‘homotypic
clustering’’ (HTC). This has been documented in inverte-
brate (Berman et al. 2002; Markstein et al. 2002; Li et al.
2007) and vertebrate (Sinha et al. 2008; Gotea et al. 2010)
genomes alike and is the basis for several genome-wide en-
hancer prediction tools (Berman et al. 2002; Markstein et al.
2002; Lifanov et al. 2003; Sinha et al. 2008; Gotea et al. 2010).
Several explanations have been offered for this common
empirical observation. The common explanation is that
multiple homotypic sites in an enhancer (or promoter)
are required for the enhancer’s transcriptional efficacy,
the desired gene expression levels and ultimately for organ-
ismal fitness (Sauer et al. 1995; Hertel et al. 1997). That is,
the observed site multiplicity is ostensibly due to selective
forces (e.g., Shultzaberger et al. 2010). For example, various
theories have proposed that site clusters may 1) facilitate

lateral diffusion of TF molecules along the DNA, thereby
increasing the effective protein concentration (Kim et al.
1987; Coleman and Pugh 1995) or 2) increase occupancy
nonlinearly through cooperative interactions among sites
(Giniger and Ptashne 1988; Hertel et al. 1997) or through
simultaneous interaction with the basal transcriptional ma-
chinery (BTM) (Lin et al. 1990; Anderson and Freytag 1991;
He et al. 2010). Indeed, nonlinear transcriptional response
to protein concentration is believed to be important for
various phenotypes (Porcher and Dostatni 2010), again
suggesting that HTC may be common due to a selective
advantage.

However, common features observed in a class of geno-
mic elements may not be due to functional constraints
alone; they may also result from properties of the ‘‘fitness
landscape’’ (Mustonen et al. 2008) and from evolutionary
sampling of this landscape (Lusk and Eisen 2010). (The space
of all possible nucleotide sequences, i.e., genotypes, with a fit-
ness value assigned to every genotype, is henceforth called
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the fitness landscape.) We hypothesized that the fitness
landscape and its evolutionary sampling play an important
role in the origin of HTC. For instance, a ‘‘simple’’ sequence
with one or two perfect binding sites and a ‘‘complex’’
sequence with a number of weaker sites may be equally
effective at activating a gene, but complex sequences
may be far more abundant and thus favored by evolution.
Here, we explore the evolutionary origins of homotypic site
clusters in enhancers, through direct examination of the
fitness landscape and by simulating the evolution of a sim-
ple enhancer. We find that evolution favors complex gen-
otypes even when simpler (more parsimonious) genotypes
of comparable fitness exist. This is largely because the space
of fit genotypes has more of the former than the latter. Our
findings are consistent with an empirical analysis of bind-
ing site multiplicities in experimentally characterized
enhancers in Drosophila melanogaster.

Our results caution against ‘‘evolutionary mirages’’ (Lusk
and Eisen 2010), where properties of the evolutionary pro-
cess lead to genotypic properties that may appear to have
mechanistic origins. In particular, they suggest an evolu-
tionary ‘‘null hypothesis’’ for the phenomenon of HTC,
against which alternative explanations, mechanistic or
evolutionary, may be assessed in the future.

Materials and Methods

Quantitative Model of Enhancer Function
We use the GEMSTAT software (He et al. 2010) to predict
the expression driven by any enhancer sequence, given the
binding specificity and concentration of the TF. The tran-
scriptional output of an enhancer is assumed to be propor-
tional to the probability that the BTM occupies the gene’s
promoter. The model enumerates every possible configura-
tion of TF molecules and the BTM bound to their respective
binding sites. Thus, for example, for a sequence with two
possible binding sites, eight different configurations would
be considered (fig. 1C), four ‘‘OFF’’ configurations (BTM is
not occupied) and four ‘‘ON’’ configurations. Any configu-
ration is associated with a statistical weight, which is the
probability of that configuration and is determined by
energetic contributions from all molecular interactions in-
cluded in that configuration. Specifically, the weight of an
OFF configuration is determined by interactions between
TF molecules and their binding sites (fig. 1C, left panel)
and the weight of an ON configuration is determined by
TF-BTM interactions (fig. 1C, right panel) in addition to
the TF-site interactions. The fractional occupancy of the
BTM, and thus the gene expression level, is given by the total
statistical weight of all ON configurations (eq. 1 in He et al.
2010), relative to that of all configurations. The expression
profile driven by an enhancer is predicted by repeating the
above process of expression prediction for every distinct
value of TF concentration along the axis. The GEMSTAT
model has parameters related to two kinds of cooperativ-
ity: 1) DNA-binding cooperativity: interactions between
adjacent occupied binding sites and 2) transcriptional
synergy: the synergistic effects of multiple binding sites

simultaneously recruiting the transcriptional machinery,
controlled by the NMA parameter. All our experiments re-
ported in the text were performed under the setting of
no cooperative DNA binding and a modest level of transcrip-
tional synergy (NMA 5 2, i.e., only two bound sites could
simultaneously activate transcription). We explored differ-
ent values of NMA, as reported in supplementary figures
S3 and S12 (Supplementary Material online).

Strength of Binding Sites and TF Occupancy
The strength of a binding site is defined as its binding af-
finity relative to the strongest (‘‘consensus’’) site. It is
a number between 0 and 1, and a site with a relative affinity
of 0.1, for example, is 10 times weaker than the optimal site,
in terms of association constant. Let LLR(s) be the log likeli-
hood ratio score of site s, computed based on the known
position weight matrix (PWM) of the TF and the back-
ground nucleotide distribution (Stormo 2000). The site’s
strength (relative affinity) is computed as exp(LLR(s) �
LLR(sopt)), where sopt is the optimal site.

The TF occupancy at an enhancer is defined as the sum
of the fractional occupancy of all sites in the enhancer, at
maximum TF concentration, as computed by the GEM-
STAT model. Fractional occupancy of a site is given by
the total statistical weight of all configurations where
the site is bound relative to that of all configurations.

Analytical Estimation of Number of Genotypes with
k Sites
The relative affinity threshold is converted to a P value p of
the site LLR, and the (relative) number of genotypes with at

least k sites at this threshold is computed as
�
L
k

�
2kpk,

where L is the length of the enhancer sequence. Taking dif-
ferences between successive values of k gives the desired
number of genotypes, up to a constant of proportionality.

Fitness Functional
Given two expression profiles u (real) and v (predicted), as n-
dimensional vectors of expression levels, a natural way to
define the fitness functional F would be to use a Euclidian
distance between u and v. Our evolutionary simulation
framework is meant to be generally usable with any ‘‘real’’
expression profile (not just the one shown in fig. 1A), and
our previous work (Kazemian et al. 2010) showed a particular
heuristic score called the ‘‘pattern generating potential’’
(PGP) to have the most desirable properties for this purpose.
Here, we defined F based on a PGP-like approach but unlike
PGP, we allowed u to be continuous profile, as follows:

1. compute reward5
P

ui minðui; viÞ=
P

u2
i ;

2. compute penalty5
P

ðumax � uiÞmaxð0; vi � uiÞ=P
ðumax � uiÞ2;

3. obtain F5½maxð0; reward � penaltyÞ�2:
The reward term is sensitive to the underprediction of

expression levels where true expression is high, whereas the
penalty term is sensitive to overprediction of expression
levels where true expression is low.
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It is worth noting that the exponentially decaying expres-
sion pattern of the TF and the regulated gene are not directly
relevant to our claims; rather, we want to examine the simple
situation when the gene expression level follows the TF con-
centration levels in a linear fashion. In fact, if we simplify the
fitness functional substantially to have only two levels of TF
concentration (high and low) and demand the gene expres-
sion to respond linearly to the TF level, our conclusions
continue to hold (supplementary fig. S11, Supplementary
Material online).

Evolutionary Simulation
We simulate the evolution of a fixed-size population of se-
quences, following the Wright–Fisher process. At each gen-
eration, random mutations are introduced into the
population. For simplicity, we consider only point muta-
tions, though the effect of indels was studied in a separate

experiment (next section). The fitness value of each se-
quence is calculated as 1 þ s, where s is the selection co-
efficient, related to the fitness functional (F), we defined
earlier as s 5 FK, where K is a parameter. The probability
of a sequence being sampled for inclusion in the next gen-
eration is proportional to (1 þ s). Thus, an individual with
F5 1 is expected to produce (1 þ K) times more offspring
than an individual with F5 0. We note that the simulation
must recompute the expression profile for every mutant
individual in each generation and thus relies upon efficient
implementation of the GEMSTAT model.

Parameterization of the Expression Model and
Evolutionary Simulation
The two main parameters of the GEMSTAT model are the
‘‘DNA-binding’’ parameter (b) and the ‘‘activation strength’’
parameter (a). Our default parameter settings were b 5 5,

FIG. 1. A model system for studying evolution of enhancers. (A) The spatial expression pattern of TF (left panel, TF concentration plotted along
the anterior/posterior axis) is read by an enhancer (middle, bottom) with sites matching the TF motif (middle, top), and the result is a spatial
expression pattern of the gene regulated by the enhancer (right panel). (B) Example gene expression profiles compared with the target profile
(red) and associated fitness functional (F) values. (C) A thermodynamic model of enhancer function. Shown is a sequence with two binding
sites (one strong, one weak), which may exist in eight possible configurations of TF molecules (green circles) bound to these sites, and in four of
which the BTM is bound to the promoter. The terms Es and Ew represent the energetic interactions between a TF molecule and its site, and
arrows labeled a denote interactions between TF molecules and BTM. Transcription is assumed to be initiated only when BTM is bound; thus,
the total probability of the four configurations on the right determines the activation level of the gene due to this enhancer (for details, see
Materials and Methods). (D) A cartoon illustration of the fitness landscape. All possible sequences are points on the horizontal plane. Each
sequence corresponds to an expression pattern, which determines its fitness functional (F) value.
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a5 2. These values were obtained from a separate exercise
where we simultaneously modeled the expression profiles
of 20 A/P axis patterning enhancers (and the nonexpres-
sion of equally many random sequences), using the binding
specificities (motifs) of six different TFs (see supplementary
fig. S4, Supplementary Material online). The Bicoid TF,
whose motif and concentration profile we have used
throughout our study, was assigned the above values (ap-
proximately) in the trained model. To get some intuition
into what these values mean, we note that b 5 5 implies
that the consensus binding site for the TF has a fractional
occupancy of 5/6 at maximum TF concentration. Likewise,
a 5 2 implies that a site with fractional occupancy � 1
induces 2-fold activation of gene expression, and under
our settings for synergistic activation, about ;7 high occu-
pancy sites are needed to achieve 100-fold activation. This
number is roughly consistent with the number of Bicoid
sites found in the well-studied hunchback promoter that
drives anterior expression. Furthermore, a simple calcula-
tion shows that with these parameter settings, a random
sequence of length 500 bp is expected to show no expres-
sion. Thus, we believe that our default settings for the
thermodynamic model parameters are realistic. We also re-
peated our simulations with an alternative setting (b 5 1,
a 5 5, supplementary fig. S5, Supplementary Material on-
line) and found little difference in the main observations
reported above.

The key parameters in the evolutionary simulations are
the population size (2N), the mutation rate per nucleotide
per generation (l) (or equivalently, 2Nl), and the selection
coefficient (s) (or equivalently, 4Ns). Default settings of
these parameters were 2N 5 100, 2Nl 5 10�3 and 4Ns
5 100. Standard values of the population size and muta-
tion rate, from the literature, are 2N; 105–106 (Thornton
and Andolfatto 2006) and l ; 10�8–10�9 (Drake et al.
1998) giving us 2Nl in the range of 0.01–0.0001, which
is approximately what we set it to be. We used time rescal-
ing (Hoggart et al. 2007) to speed up our simulations. Here,
the population size is scaled down by a constant (we used
k5 1000), keeping 2Nl and 4Ns unchanged; t generations
of simulation in this scheme is approximately equivalent to
kt generations of simulation in the absence of rescaling.
Thus, the default setting of 2N 5 100 is equivalent to
2N 5 105 without time scaling. We repeated the simula-
tions with a larger population size of 2N5 1000 (equivalent
to 2N5 106, unscaled) and noted that the observed trends
were unchanged (supplementary fig. S6, Supplementary
Material online). We set the selection coefficient s of a
genotype as s5 FK, where F 2 [0,1] is the fitness functional
of the genotype and K is the selection coefficient of the
fittest genotype (F5 1) in relation to the least fit genotype
(F5 0). The latter was set to a value of 50�1/2N by default,
indicating strong selection (2NK 5 50). Note that in any
one generation, there is a relatively small difference in F
between the fittest genotype and the wild type; this means
that the effective selection coefficient s for the fittest geno-
type is typically much smaller than 50/2N. We also repeated
our simulations with 2NK set to 10 and 20. Adaptation was

often not observed in the sampled time at the former value,
hence, the corresponding results are not shown. Results of
simulations with 2NK 5 20 are shown in supplementary
figure S7 (Supplementary Material online) and support
our claims above. All simulations were performed in the
absence of insertions and deletions, which have been sug-
gested as important influences in the evolutionary dynam-
ics of regulatory sequences (Sinha and Siggia 2005; Lusk and
Eisen 2010). Although a detailed examination of this influ-
ence was not pursued here, we repeated our simulations
with indels (at rates proposed in the literature) and found
our observations about distributions of site multiplicity
to be unchanged (supplementary fig. S8, Supplementary
Material online).

Drosophila Enhancers
We collected 21 Bicoid-driven enhancers from D. mela-
nogaster with functions in anterior/posterior patterning
(Ochoa-Espinosa et al. 2005; Halfon et al. 2008). Ortholo-
gous sequences from five other species in the melanogaster
group (D. ananassae, D. pseudoobscura, D. virilis, D. moja-
vensis, and D. grimshawi) were extracted using the liftover
tool http://genome.ucsc.edu/cgi-bin/hgLiftOver.

Results

Fitness Landscape and Evolutionary Simulations
We begin with the gene expression pattern that constitutes
the phenotype for this study. Our enhancers will harbor
binding sites for a single TF, whose concentration has an
exponentially decaying pattern along an axis (fig. 1A). This
mimics the concentration gradient of the morphogen Bi-
coid along the anterior/posterior (A/P) axis of the blasto-
derm-stage Drosophila embryo, but more generally, it
reflects the fact that most TFs have spatial/temporal var-
iability in their concentration. The binding specificity of the
TF is assumed to be described by the Bicoid PWM (fig. 1A;
Bergman et al. 2005). The expression pattern that a func-
tional enhancer is required to encode is chosen to be iden-
tical in shape to the TF pattern, with 100-fold activation at
the highest levels of the TF. (Note that to implement such
a linear ‘‘readout’’ of the TF concentration gradient, an en-
hancer does not require cooperative interactions among
its binding sites.) We next define a ‘‘fitness functional’’
(denoted by F) for any enhancer as a measure of how sim-
ilar its induced expression profile is to the required profile.
This is a number between 0 and 1 (with 1 indicating iden-
tity) and is derived from the PGP score in Kazemian et al.
(2010) (fig. 1B and Materials and Methods).

An important component of our framework is the quan-
titative model that maps the enhancer sequence, along
with the TF concentration and binding specificity, to gene
expression. We use a model based on statistical thermody-
namics that is very similar to that proposed by Shea and
Ackers (1985) and discussed and refined by several recent
studies (Buchler et al. 2003; Gertz et al. 2009; He et al. 2010).
This model has been demonstrated to explain well the spa-
tial patterning of early developmental genes in Drosophila
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(Zinzen et al. 2006; Segal et al. 2008; He et al. 2010). A brief
description of the model is provided in Materials and
Methods (also fig. 1C), whereas details can be found in
our earlier work (He et al. 2010). Importantly, even weak
binding sites contribute to regulation in this model, thus
allowing a prediction of the readout encoded by any se-
quence in the genotype space (and not just those with
one or more sites above some threshold). Also, cooperative
DNA binding of multiple TF molecules was excluded from
the model, for reasons given later (Discussion). We exam-
ined the space of 500 bp long sequences (genotypes), their
respective expression patterns (phenotypes) and the fit-
ness functional values computed from the phenotypes
(fig. 1D).

To characterize the distribution of fit genotypes that an
evolutionary process would encounter, we performed
Wright–Fisher simulations of a fixed-size population, where
each individual is an enhancer genotype. Repeated rounds
of random mutation and natural selection were applied to
the evolving population, where strength of selection de-
pends on the phenotype (expression pattern) of a sequence
and its fitness. (For details and justification of evolutionary
and biophysical parameters, see Materials and Methods.)

The Space of Fit Genotypes Sampled by Evolution
Shows a Relative Abundance of Complex
Genotypes
Fifty independent evolutionary simulations were run for
106 generations each; adaptation typically happened within
105 generations, and the average fitness functional for the

population stayed above F 5 0.8 thereafter (fig. 2A). We
sampled postadaptation genotypes from all simulations
and examined the site multiplicity of this evolutionary sam-
ple of fit genotypes (fig. 2B). (Site multiplicity is the number
of binding sites in the genotype, defined by a threshold on
their binding affinity relative to that of the optimal site. The
threshold used here is 0.25 times the binding affinity of
a perfect site; for details, see Materials and Methods). While
the most parsimonious genotypes sampled use only 1
above-threshold site, the mode of the distribution is at five
sites, clearly demonstrating that evolutionary sampling fa-
vors genotypes with relatively high site multiplicity. This
observed bias is not due to the complex genotypes in
the pool having higher fitness (fig. 2C). At the same time,
very complex genotypes (e.g., those with .7 sites at the
threshold) are also rare in the evolutionary sample. The
trends of figure 2B are also seen when defining sites with
a stricter threshold of relative affinity � 0.5 (fig. 2D). We
also plotted the genotype frequency at different values of
the ‘‘occupancy’’ of the TF on the entire enhancer (fig. 2E).
(Occupancy is defined by the thermodynamic model as the
average number of sites bound by TF molecules and is in-
dependent of any threshold on site affinity; see Materials
and Methods.) Clearly, the range of observed occupancy
values is much smaller than the ranges of site multiplicity
(fig. 2B and D). In other words, selection ensures that the
genotypes sampled after adaptation lie in a narrow range of
occupancy (which is closely related to fitness); however, the
same occupancy level (and hence fitness) can be achieved
through a wide range of site multiplicities.

FIG. 2. Results of evolutionary simulations. (A) Time series of (average) population fitness, showing adaptation. Each curve represents the
history of one population (truncated at 200,000 generations). (B) The distribution of site multiplicity (number of binding sites) in
postadaptation genotypes. (Five random individuals with F � 0.8 were sampled from the population every 5000 generations.) The x axis is the
number of sites (at relative affinity � 0.25) and the y axis is the frequency of genotypes with that multiplicity. (C) Box plot of fitness (F) values
of genotypes with different site multiplicities. (D) Same as plot (B) but for a higher affinity threshold, 0.50. (E) Distribution of TF occupancy in
postadaptation genotypes.
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Causes of the Evolutionary Bias toward Complex
Genotypes
Abundance of Complex Genotypes in the Fitness

Landscape
The distribution of genotypes sampled by evolution is
shaped, to a large extent, by the fitness landscape. (For
an expression for the equilibrium probability of sampling
a genotype, as a function of its fitness functional F, e.g.,
see Sella and Hirsh 2005.) Thus, a possible explanation
for the complex genotype bias seen above is that the fitness
landscape has a relative abundance of such genotypes, at
high F values.

We therefore examined the fitness landscape directly,
with the goal of characterizing the site multiplicity of all
fit genotypes. First, we analytically estimated the frequency
of genotypes with exactly k binding sites at relative affin-
ity � 0.25 (Materials and Methods), shown in figure 3A. We
see that for the most part, genotypes with fewer sites are
more abundant. Next, for each k, we sampled genotypes
with exactly k binding sites (uniformly at random), com-
puted the fitness functional for each genotype and thus
estimated the probability that such genotypes are fit
(F� 0.8) (fig. 3B). Finally, multiplying the quantities shown
in figure 3A and B, we obtained the relative proportion of
k-site genotypes in the space of fit genotypes (fig. 3C): the
three most abundant site-multiplicity values are k5 6, 5, 7,
in that order, together accounting for about 90% of the
total frequency. Thus, complex genotypes are indeed more
common among all fit genotypes, and this explains their
dominance in the results of evolutionary simulation. We
also noted clear examples of how one genotype class can
be evolutionarily preferred over another class (e.g., 5-site vs.
7-site genotypes, fig. 2B) due to greater frequency (fig. 3C),
despite being less fit on average (fig. 3B).

Importance of Weak Binding Sites
We next analyzed why complex sequences are frequent
among fit genotypes. We hypothesized that the strength
of binding sites play a major role here that complex geno-
types make use of contributions from many suboptimal sites
to achieve the same net occupancy of the TF on the en-
hancer as might be achieved through fewer closer-to-optimal
sites. If this is the case, the complex genotype bias in the
fitness landscape (fig. 3C) should become less prominent
as we make the threshold for counting sites more stringent.
We found this to be the case indeed, as shown in figure 3D.
For instance, at the high threshold of relative affinity 5 0.8,
where only the optimal site gets counted, the mode of the
observed distribution (site multiplicity k 5 2) also corre-
sponds to the most parsimonious (simplest) genotype(s) ob-
served to achieve the fitness criterion of F � 0.8; in other
words, the complex genotype bias is not seen. A direct ex-
amination of site strengths revealed that complex genotypes
have weaker sites on average than simpler genotypes (fig. 3E).

Thus, broadly speaking, there are two types of fit
genotypes: simple sequences, with few strong sites, and
complex sequences, with more weak sites. Both types of
genotypes can achieve high fitness, but complex sequences

with weak sites are common in the evolutionary samples
(fig. 2B and D) due to their high genotype frequency
(fig. 3C). To illustrate the intuition behind this, we present
a simple theoretical calculation. Let us characterize a geno-
type by the two integers (k,m), where k is the number of sites
andm is the strength of each site (defined here, for simplicity,
by the number of mismatches relative to the optimal site).
The abundance of (k,m) genotypes can be calculated as

Nðk;mÞ5
�
L
k

�
2k
h�

l
m

�
3m

ik
4L� kl; ð1Þ

where L is the length of the enhancer and l is the length of
each site. Using this formula and the parameter values in our
setting (L 5 500 and l 5 7), we find that complex sequences

FIG. 3. Genotype frequency and properties of fit genotypes. (A)
Relative frequency of genotypes with different site multiplicities: the
number of sequences with k binding sites (at relative affinity � 0.25)
is estimated analytically, for each value of k. (B) Probability of a
genotype with k sites being fit (F � 0.8). (C) Frequency of k-site
genotypes among all fit sequences, calculated by multiplying the
relative frequency in (A) and the probability of being fit (B). (D)
Same as plot (C), at different relative affinity thresholds (0.1, 0.25,
0.5, 0.8). (E) Average relative affinity of binding sites in k-site
genotypes. (F) Histograms of subsites (relative affinity , 0.25), for
evolutionary (green) and uniform (blue) samples of genotypes with
k 5 6 sites at relative affinity 0.25.
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can be more common than simple ones (supplementary fig. S1,
Supplementary Material online). For instance, we see that
N(2,1) is about 13 times larger than N(1,0), that is, genotypes
with two suboptimal sites are 13 times more frequent than
genotypes with one optimal site. Similarly, N(3,1) is ;6 times
larger than N(1,0). If we assume, for instance, that that one
optimal site can be functionally replaced by a few suboptimal
sites (e.g., 2–3 sites with 1 mismatch each), the class of fit gen-
otypes will have a relative abundance of complex genotypes.
This simplistic calculation, which is not tied to the precise ge-
notype–phenotype mapping and its parameters, reveals the
main idea behind an evolutionary origin of homotypic site
clustering. In the supplementary text (Supplementary Mate-
rial online), we explore a different theoretical model of bind-
ing sites where certain positions of a binding site, strong or
weak, must remain invariant, and we find the same intuitive
explanation of HTC to be revealed by this alternative model.

An Evolutionary Signature
We designate the samples we obtained for studying the
properties of the fit genotypes (fig. 3C) as ‘‘uniform samples’’
to distinguish them from evolutionary samples because the
way evolution explores the fitness landscape depends on his-
tory (thus not uniform sampling). We noted that the evo-
lutionary samples (fig. 2B) and uniform samples (fig. 3C) of
the same population (i.e., all fit genotypes) have similar site
multiplicity distributions, with most of their probability mass
concentrated on the same values (k 5 5, 6). However, the
two distributions also have significant differences, for exam-
ple, evolutionary samples include a greater representation of
k 5 4 genotypes compared with uniform samples (proba-
bility 0.21 vs. 0.07). This particular statistical observation led
us to an interesting characterization of evolutionarily sam-
pled genotypes. We first noted that the average fitness of
k 5 4 genotypes is comparable to that of k 5 5 genotypes
in the evolutionary samples (fig. 2C) but substantially lower
in uniform samples (supplementary fig. S2, Supplementary
Material online). In other words, evolution finds only the
fittest (F� 0.97) among all fit k5 4 genotypes. Investigating
this further, we noted that the k 5 4 genotypes that evo-
lution finds have unusually many ‘‘subsites’’ (sites below the
strength threshold used), in addition to the 4 sites, that
contribute to the occupancy and hence to fitness of the
enhancer. This is clear from figure 3F, where histograms
of subsite multiplicity show that fit genotypes sampled by
evolution (green) and are significantly enriched in subsites
compared with uniform samples (blue). In other words, evo-
lutionary samples have a greater spread of site strengths than
random expectation (represented by the uniform samples).
This is what leads, in this case, to k5 4 genotypes found by
evolution having unusually high fitness, and consequently,
a higher relative frequency. Interestingly, this evolutionary
signature was reported previously, as an abundance of sub-
sites near functional binding sites, in a systematic analysis of
11 mammalian genomes (Reid 2007).

Temporal Profile of Site Multiplicity in an Evolving
Enhancer
We noted above (fig. 2) that the evolutionary process fre-
quently samples complex genotypes after adaptation has

been reached. However, it is plausible that parsimonious
genotypes serve as the entry points to the space of fit gen-
otypes that evolution explores. That is, evolution may be
‘‘stumbling into’’ parsimonious genotypes first because
they have few sites, and after one fit genotype has been
found, subsequent gain and loss of sites leads to more
complex genotypes. We therefore asked if the evolving
enhancer is parsimonious at the time of reaching adapta-
tion and acquires additional sites postadaptation. Surpris-
ingly, we found this not to be the case. Instead, we observed
that the most parsimonious genotype reached by evolution
(over a long period) is typically reached postadaptation.
Figure 4A–C shows three typical simulations, in terms of
how the site multiplicity changes with time, before as well
as after adaptation. Note that in each simulation, the most
parsimonious fit genotype (arrows) is encountered well af-
ter adaptation was reached (shown as the point of transi-
tion from gray to bold lines and by the presence of
markers). This is true of most of our simulations: in 70%
of our simulations, the most parsimonious fit genotype
had at least two fewer sites than the genotype at which
adaptation was reached (fig. 4D).

Site Multiplicity Distributions in Drosophila
Enhancers
Our study is based on the motif and concentration profile
of the Bicoid TF, which activates expression in the anterior
half of the blastoderm-stage embryo in Drosophila. There-
fore, it is instructive to examine if our observations about
site multiplicity distributions (in synthetic genotypes) are
mirrored in real enhancers as well. We collected 21 bona
fide enhancers that use Bicoid binding sites to drive anterior
expression in the early embryo in D. melanogaster. For each
enhancer, we also collected orthologs from (up to) five other
moderately diverged species from the Drosophila group
and computed their site multiplicity at the same threshold
as in figure 2B above. These are shown in figure 5A, grouped
by orthology. If one assumes that orthologous enhancers
have similar fitness, this plot suggests that variability in site
multiplicity and abundance of nonparsimonious genotypes
is true of real fitness landscapes. However, orthologous en-
hancers may vary in their transcriptional outputs, and even
if they have the same output, different orthologs may uti-
lize Bicoid binding to different extents (for instance, by
making use of other TFs). Therefore, we next estimated
the occupancy of every enhancer in our collection (using
the same procedure as in fig. 2E) and examined the site
multiplicity distributions of enhancers grouped by occu-
pancy. (Recall that in our simulations, postadaptation gen-
otypes exhibit a narrow range of occupancy centered at ;7
[fig. 2E].) The results (fig. 5B) suggest that if we use esti-
mated occupancy as a surrogate for the transcriptional ef-
fect of Bicoid, evolutionary samples of the fitness landscape
exhibit (qualitatively) the same kind of variability of site
counts that our theoretical study anticipates. For example,
enhancers with estimated occupancy ;7 have site multi-
plicity in the range 2–5, with the median at 4. (Compare
this with artificial evolutionary samples in fig. 2B, mostly
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with 3–7 sites and a median of 5.) That this is a qualitative
rather than quantitative agreement is expected, since the
quantitative model used in our simulations almost certainly

misses certain aspects of the real enhancers’ regulation.

Other Potential Causes of Complex Genotype Bias
Finally, we investigated additional factors that may influ-
ence the emergence of a complex genotype bias in en-
hancers, including nonequilibrium sampling of the fitness
landscape, short local duplications in DNA, and differences
in stochasticity of gene expression induced by different
genotypes.

Local Topography of Fitness Landscape
The distribution of evolutionarily sampled genotypes (fig. 2)
may depend on local properties of the fitness landscape. For
instance, high fitness genotypes in a relatively ‘‘rugged’’ re-
gion may be sampled more or less frequently than similar-
fitness genotypes in a smoother region (Weinberger 1991;
Smith et al. 2002). We quantified the local ruggedness of
the fitness landscape around a genotype by its ‘‘average cor-
relation length’’ (ACL [Hordijk 1995]; supplementary fig. S9,
Supplementary Material online) and found that genotypes
with k 5 4–8 sites had similar ACL, suggesting that topo-
graphical differences, at least to the extent characterized by

the ACL score, do not significantly influence the complex
genotype bias.

Effect of Local Duplications
A remarkably high coverage of short tandem repeats has
been observed in Drosophila enhancers (Sinha and Siggia
2005), suggesting that short local duplications may play
an important role in regulatory sequence evolution and
perhaps lead to homotypic site clustering. To investigate
this, we compared the results of evolutionary simulations
with substitutions, short insertions and deletions, to sim-
ulations where all or part of the insertions were local du-
plications. However, we observed no difference in either
the complex genotype bias or the adaptation time in sim-
ulations with or without local duplications (data not
shown). Future work will have to examine the role of local
duplications in enhancer evolution under varying assump-
tions about the underlying indel and duplication rates and
length distributions.

Noise Characteristics of Complex Genotypes
The binding site composition of an enhancer has the
potential to affect intrinsic noise (stochasticity) in gene
expression levels and thus the robustness of biological pro-
cesses (Raser and O’Shea 2004; Kaern et al. 2005). In par-
ticular, a recent study (Holloway et al. 2011) shows that

FIG. 4. Temporal dynamics of site multiplicity. (A–C) Average site multiplicity of genotypes in the evolving population, as a function of time, for
three typical simulations. The gray part of each curve indicates postadaptation profile (F � 0.8); the black part indicates preadaptation. (D)
Average site multiplicity of genotypes at adaptation (x axis) versus the minimum multiplicity encountered postadaptation (y axis). Each point
represents one simulation.
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greater number or strengths of Bicoid sites in the hunch-
back gene promoter leads to reduced noise in hunchback
expression (while increasing the expression levels). We
therefore asked if the (high fitness) genotypes sampled
by our evolutionary simulations might reveal a correlation
between site multiplicity and noise in gene expression. We
estimated variance in TF occupancy on each enhancer (oc-
cupancy and expression level are correlated in our model)
and found a strong negative correlation with site multiplic-
ity (supplementary fig. S10A, Supplementary Material on-
line). Importantly, this correlation exists despite the mean
occupancy being roughly constant (supplementary fig. S10B,
Supplementary Material online). Phenotypic consequences
of reduced noise in expression may therefore be an impor-
tant factor leading to the complex genotype bias observed
in real enhancers. However, since such consequences were
not factored into our fitness function, we conclude that the
bias toward HTC can arise even in the absence of a
noise–fitness relationship.

Discussion
A fundamental aspect of understanding the complexity
and design of a biological system is whether these features
are functional requirements or consequences of the evolu-
tionary process (Lynch 2007). For instance, a complex
design may be chosen by evolution not because of any in-
herent functional advantages over alternative designs, but
because it is more easily found by evolution (Soyer and
Bonhoeffer 2006). We studied this question in the context
of cis-regulatory sequences. The design feature we investi-
gated is the HTC of TF binding sites, found in regulatory
sequences across major animal kingdoms (Lifanov et al.
2003; Gotea et al. 2010). The relative simplicity of the sys-
tem we studied, where the phenotype (expression pattern)
of a sequence can be defined using a well-studied biophys-
ical model, allows us to simulate its evolution and perform

controlled analysis. Our results show that even when sim-
pler designs exist for the desired expression pattern, rela-
tively complex designs (genotypes with more sites) are more
readily reached by evolution (fig. 2B and D). This is, to a
large extent, because those complex sequences occupy a
larger proportion of the space of fit genotypes (fig. 3C).
There are more ways to ‘‘build’’ a fit enhancer with many
weak sites than with a few strong sites, and this is why evo-
lution finds the former type more often. We also observed
a subtle but clear evolutionary signature in the synthetic
enhancers: evolutionary samples tend to have a broader
spread of site strengths (fig. 3F) than expected from a uni-
form sampling of all fit genotypes. We explored the tem-
poral profiles of site multiplicity in an evolving enhancer,
and found, somewhat surprisingly, that simpler designs are
not necessarily the precursors of more complex designs
that evolve postadaptation (fig. 4). We examined site mul-
tiplicities of Bicoid-driven enhancers in Drosophila species
and found a characteristically broad range of multiplicities
among enhancers grouped by orthology or by estimated
Bicoid occupancy (fig. 5), providing empirical evidence
for the complex genotype bias we observe in simulations.
Finally, we investigated alternative sources of this bias and
found that local topography of the fitness landscape
(around a fit genotype) does not play a significant role
nor does the phenomenon of short local duplications in
the sequence, at least within the parameter ranges we ex-
plored. On the other hand, the higher fidelity (reduced
noise in gene expression) associated with complex geno-
types is a potential cause of their relative abundance, even
though we did not explicitly demonstrate this within our
simulation framework.

We note that to an extent, HTC does arise from func-
tional requirements—if an enhancer driving the appropri-
ate expression level requires an occupancy of say 5, it must
harbor at least five sites; this is a functional constraint. At

FIG. 5. Multiplicity and occupancy of orthologous enhancers of Drosophila. (A) Box plot of site multiplicities (at relative affinity � 0.25) for
orthologs of Bicoid-driven enhancers. Multiplicity values are not normalized for length, since each orthology group has relatively little length
variation. (B) Box plot of site multiplicities (y axis) for Bicoid-driven enhancers grouped by TF occupancy (x axis). Occupancy and multiplicity
values are normalized by length, since each value of occupancy includes enhancers of widely different lengths.
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the same time, it is accepted that multiple weak sites may
function as well as one or few strong binding sites (Roider
et al. 2007; Shultzaberger et al. 2010), suggesting that the
neutral space (Wagner 2007) of fit genotypes may be highly
diverse. We propose that this diversity is a key determinant
of enhancer composition and that the required TF occu-
pancy is more likely to be implemented through a greater
number of sites (including suboptimal ones) than with the
minimal number of optimal sites.

Earlier work has proposed specific mechanistic explan-
ations of HTC that multiple sites may facilitate TF-DNA
interaction synergistically (Giniger and Ptashne 1988; Lin
et al. 1990; Anderson and Freytag 1991; Hertel et al. 1997;
He et al. 2010) or that HTC can make sequences more ro-
bust to genetic and environmental perturbations (Ludwig
et al. 1998), among others (Gotea et al. 2010). However, our
simulations clearly showed a complex genotype bias even
in the absence of cooperative interactions between sites
(also see supplementary fig. S3, Supplementary Material
online) and despite the fact that our fitness function does
not incorporate robustness. Thus, we offer a plausible ex-
planation for HTC that relies upon fairly general assump-
tions about the underlying biochemical model and fitness
function. This provides a baseline that more specific mech-
anistic explanations may be compared with or used in
conjunction with. We do note that our results rely upon
contributions of multiple sites being free from spatial con-
straints, unlike what is proposed in enhanceosomal models
of enhancer function (Arnosti and Kulkarni 2005). Without
this assumption, calculation of the abundance of genotypes
may favor simple instead of complex sequences. Many
studies to date have found the arrangement of binding sites
in metazoan enhancers to be extremely flexible (Brown
et al. 2007; He et al. 2009; Liberman and Stathopoulos
2009), supporting our assumption, but this issue is
currently open to debate.

Our intuitive explanation of HTC is based on the assump-
tion that the function of a strong binding site can be replaced
by multiple weak ones. However, there are many reported
cases where an enhancer may harbor multiple high-affinity
binding sites. We hypothesize several possible explanations:
for instance, some enhancers may demand a high level of TF
affinity that requires multiple high-affinity sites; the enhan-
ceosome model as explained above makes it impossible to
trade one strong site for multiple weak ones (Crocker et al.
2010). Also, nonadaptive forces such as short tandem dupli-
cation (Sinha and Siggia 2005) may facilitate the occurrence
of multiple high-affinity sites. A recent study (Paixao and
Azevedo 2010) examines the multiplicity of binding sites
in enhancers and uses simulations to show that this is largely
due to recombination and weak direct selection for multi-
plicity. However, the definition of multiplicity (as the pres-
ence of two or more perfect binding sites) by Paixao et al. is
very different from our definition, making its central ques-
tion distinct from ours. Khatri et al. (2009) studied the evo-
lution of enhancer sequences using a model system similar to
ours but focused on the question of whether the optimal
phenotype is reached (or not), in an adaptive process.

One way to interpret our results is that in genotypes
found by evolution, the desired function (phenotype) is
distributed into multiple weak components, instead of be-
ing concentrated on one or two strong ones. Such ‘‘distrib-
uted’’ designs, if allowed, may be a common feature of
other systems. For example, signal transduction processes
are often characterized by a long cascade of signaling
events, where each step may serve only a small piece of
the overall function of the pathway (e.g., extent of signal
amplification) (Li and Qian 2003; Soyer and Bonhoeffer
2006). Our analysis suggests that a distributed design
may in fact be a consequence of the evolutionary process,
where both fitness and abundance of genotypes are
important determining factors for the sampled designs.

The framework developed for this study can be used
more broadly to explore the link between enhancer com-
position and evolution, for example, to explain binding site
turnover rates in developmental enhancers that interact
with multiple TFs (Kim et al. 2009) or to understand the
effects of mechanistic features such as synergistic activa-
tion, DNA-binding cooperativity, and short-range repres-
sion (He et al. 2010) on evolutionary dynamics and
sequence-level properties of enhancers. Two features of
our framework—the ability to map any given sequence in-
to its regulatory function (without using arbitrary rules on
numbers of sites of various TFs or arbitrary thresholds to
distinguish sites from nonsites) and an efficient implemen-
tation of the function model as well as the Wright–Fisher
process—make it particularly suitable for such studies. Our
computer program will be available at the Sinha lab website
(upon publication).

Supplementary Material
Supplementary text and figures S1–S12 are available at
Molecular Biology and Evolution online (http://www.mbe.
oxfordjournals.org/).
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